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ABSTRACT 

Let u be a solution of an elliptic (linear or nonlinear) variational inequality 
with obstacle. Under natural smoothness conditions put upon the data, it is 
shown that the second derivatives of u lie in a certain Morrey space and hence, 
in the case of two independent variables, the solution u has a H61der contin- 
uous gradient. 

In this paper, we consider the problem of interior regularity of solutions 

of systems of second-order elliptic variational inequalities with obstacles. 

Under natural smoothness assumptions on the data, it is shown that the second 

derivatives of any solution lie in certain Morrey spaces and hence, in the case 

of two independent variables, the first derivatives are H61der continuous. It is 

well known that one cannot expect the second derivatives to be H61der continuous. 

We treat the linear and the nonlinear case. 

For  s ingle  second order variational inequalities (i.e. not systems) and for 

second-order systems in one variable, the H61der continuity of the gradient of 

the solution is well known (see Lewy and Stampacchia [7,8], Brezis and Stam- 

pacchia [1], Schiaffino and Troianello [12]). For  systems in more than one 

independent variable, regularity results have been obtained by Tomi [-13, 14] 

and Hildebrandt [5]. Tomi and Hildebrandt treat a rather general side condition, 

but neither author considers systems with a general elliptic principal part, instead, 

they assume some separating condition. A similar condition was also assumed 

t During the preparation of a portion of the paper, the author was a guest of the Scuola 
Normale Superiore in Pisa, supported by the German Research Association (Deutsche Fors. 
chungsgemeinschaft). 
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by Vergara Caffarelli [151, who studied systems of variational inequalities with 

the side condition corresponding to the case of two elasitc membranes, one lying 

above the other. 

NOTATION 
f~ = bounded open subset of the n-dimensional euclidean space R", n =2,  3, ... 

LP(fl) (shorter: L p) = Lebesgue space on ~ with norm llull. -- <flul" dx)l,, ,  

1 = [lull  = e s s  sup  lu/x) I, 
S = integration over f~ in the sense of Lebesgue 

H ""(f~) (shorter: H " P )  = Sobolev sp.~ce on ~ with norm II u II 
(k = 0, . . . ,  m) 

Hm= H m'2 

V k = vector of generalized derivatives of u of order k 

0~ --derivative with respect to the i-th argument 

0 o -- identity 

C(B), CI(B), C~(B) resp. C 1 +~(B) = space of real functions on the open subset 

B ~ R" which are continuous, continuously differentiable, Ht~lder continuous 

with exponent ~t ~ (0,1), resp. H~lder continuously differentiable in B 

C~(f~) = space of test functions on f~ 

Hol(f~) -- closure of C~(f~) in H1(~) 

Hl~o'ff --- space of functions on f~ whose restrictions are in Hm'e(f~o) for every 

f~o c ~ f~ (i.e. f~o compactly contained in f~) 

E~or (f~) = space of L2-functions on f~ which satisfy a local Morrey condition, 

i.e. for every u ~ L~o2~ B and every f~o ~ ~ f2, there exists a constant K such that 

.fRu2dx < K R  2,tj f le  (0, 1), for every ball B R of radius R contained in f~o, where 

fR denotes the integration over BR. Finally, let [W] '  denote the space of r-vector 

valued functions with components in W, where W is one of the function spaces 

defined above. The corresponding norms are denoted as in the case r -- 1. 

The variational inequality. Let V be a closed subspace of [Ht ]  ' containing 

[H~], and let F:, i=0 ,  ..-, n, resp. ~ r-vector-valued real functions on f~ • R '~+~) 

resp. f~ for which some smoothness assumptions will be made. 

Let K = (w ~ V Iw > ~ in [H~]'}. (For the definition "w __> ~k in H ~'', see [71. ) 

The problem is: 

Find u ~ K such "hat 

(1) ( T u ,  u - v ) :  = ~., . fFi(x,u,Vu)'Oi(u-v)dx < O, (i = O,...,n), for all v e K .  

The point �9 denotes the r-dimensional euclidean scalar product. 
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It is well known that problem (1) has a solution if the mapping T: V -~ V 

defined in (1) is K-coercive and of type L in the sense of [1]. This can be assured 

by some growth, coerciveness, and monotonicity assumptions on the coefficients 

F~ (see [1], [6], and [10, Chapter 5. 12]). In this connection, we remark that the 

additional coerciveness hypothesis in [6] for the principal part of the nonlinear 

differential operator is not necessary (see [4]). 

For our regularity theorem, we need the following assumptions for the coef- 

ficients Fi: 

(A) The case with nonlinear principal part. 

I. Smoothness. Let F~:~ x R '(n+l)-~R r be functions such that 

i) Fie[Ct(f~ x Rr(n+l)] ', i = 1 , ' " ,  n 

ii) Fo(x,.) e [C(Ra'+I))] ' for almost all x e t2 

iii) Fo is measurable on f~ x R '~+1). 

II. Growth condition. Let F~x and F~ denote the vectors of the first partial 

derivatives of all the components of F,(x, tl) with respect to x resp. to r/.We assume 

there exist constants K,A, fl, 0 < B < 1, and functions g e L2(f~), go e Ll2of(f~) 

n L 2 such that for all r / eR '(~+1) and almost all x the following inequalities 

hold: 

i) I F,(x, r/)[ __< K[ r/I + g(x), i = 1, . . . ,  n, 

ii) I F~(x,r/)[ =< K I~/I + go(x), i = 1,. . . ,  n, 

iii) I F,,(x,r/) I < K + go(x), i = 1,. . . ,  n, 

iv) IFo(x,n) l =< K I ,  I + 
III. Strong uniform ellipticity. Let Fi.'k. denote the partial derivative of 

the v-th component of F~ with respect to the argument of F~ in (1) which corresponds 

to OkU ~ where u. is the p-th component of u. We assume there exists a constant 

> 0 such that 

>= (i, k = 1 , . . . , n ;  = 1 , . . . , r ) ,  

for all ~ e R"  with components ~ .  

(B) Conditions in the case with linear principal part. 

In this case, we assume that F~(x,rl) is linear in r/, i.e. 
v/a 

Fi(x,~l) = ~k,aik(X)y,k +f~(x), k =0, "",  n ;/~=1, .. . ,  r ; i=1 ,  . . . ,  n ;v = 1, ..., r 

where the aik and f ;  satisfy the following conditions: 

I ' , I I ' .  Smoothness and growth conditions. 

i') a~k~e C~(f~) (~ L~ 
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ii') f [ ~  L2(O) N H~o c (O) 

iii') wc~- r2.a �9 . =~loo (O) 

for i =  1 , . . . , n ; k = O , . . . , n ; v , # =  1 , . . . , r .  

III ' .  Elliptieity. There exists a constant 2 > 0 such that 

 lr ( i .k;  1, . - . ,n ;  v ,# = 1 , . . - , r ) ,  for 

~ R" and 7r ~ R'. 

The conditions for F 0 are the same as in the nonlinear case (A). 

With these assumptions, we can obtain the following 

THEOREM. Let the coefficients F i in (1) satisfy the conditions A or B and  the 

obstacle ~k the condition V 2 ~ [L~f, (O)] n 'n ' ' .  Then every solution u ~ K  of 

(1) has second derivatives V2u ~ [L~'r . . . . .  for  some ~ ( 0 , 1 ) .  

COROLLARY. / f  n = 2, then u ~ [C 1 +~(O)]'. 

PROOF OF THE THEOREM. The first step consists in proving u ~ [H2or r. 

This follows by setting 

(2) v~ = u + e D_ih(q~2n,,,(u-~k)) 

where ~b~C~176 $ > 0 ,  and D• + h - l ( z ( x + h e 3 - z ( x ) ) ,  h > O ,  

with et being the i-th unit vector. If  h and e = ~(h) are small enough, it is easy 

to see that ve E K. Inserting v = ve into the variational inequality, one obtains 

by classical techinques of the theory of elliptic equations an estimate 

][r [l~ < c uniformly for h ~ 0  

and all admissible ~b. From this the desired fact follows. This method was used 

by Lions [9]. Another method was used by the author in [3] where it was shown 

that 

V~ : = U + ec~2D_ihDth(g'(U + a ) )~K  

for a certain auxiliary function # > 0 and a certain number a. From this the 

differentiability u ~ [Hlo 2 ] '  follows too. This method has the advantage that 

one can also treat the case of two obstacles, i.e. St  < u < $2 (which are allowed 

to have convex resp. concave corners). 

The second step consists of proving a Morrey condition for V2u. For every 

closed ball B R ~ fl of radius R with the property that the concentric ball B2R 

with radius 2R is contained in f~, we construct a function ~b ~ H 2'oo(f~) such that 
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~b = 1  on B~, ~ b = 0  on f~-B2R,  0 < q S <  1 a.e. in f~, and 

(3) [V~b I < K ' R  -1, iV2~I ~ K ' R  -2 in B 2 R - B  a 

with some constant K'.  Such a function ~b can easily be constructed. Choosing 

the number h > 0 smaller than dist (~B2R,Sf~) and e ~ (0, h2], one has for 

this 

(4) u~ " ---- tt "4- 8~)2D_jhDjh(U -- t~) ~ K, j r {1,..., n}. 

In fact, since q~ has compact support and V ~ rH13" it follows that u~ e V, and L Od , 

from u > ~ in [H1] ' one concludes (4) in an elementary way. 

Thus, we may insert u~ into the variational inequality (1) and obtain 

- ~ i f  F,.  di(dp2D_jhOjh(U --t~))dx < O, (i = O, . . . ,  n). (5) 

Note that we may write 

(6) D_jhOjh(U -- t~) = D_jh ( -  bj + Djh(U -- t~)) 

and in (4), we may replace F i by 

(7) F i - d i ,  i =  1 , . . . ,  n, 

since q~2 has compact support in ~. The vectors b j, di ~ R" will be defined later. 

in (4), we do some elementary calculations which are based on the identity 

f f'63i(~ZD-hjg)dx = f f'clicpED-hjg dx + f f '~2D_hjO,gdx  

= - f  Dhj(f 6qi~2)'gdx - f Dhj(f~2)'61igdx 

provided the terms have meaning. This identity can be applied to (5) with 

f = F i - d i  and g = b j + D h j ( U - @ )  

if we use remark (6) and (7). Going to the limit h ~ 0, we arrive at the inequality 

(8) Zi.I-[Oj((F i -- di) (~i~b2) �9 ((~j(u - ~1) - b j) q- 8j((F i - di)~b2) �9 Oidj(u - @)]dx 

- ) ' F o ~ b 2 0 2 ( u -  t~)dx ~_ O, (i = 1 , . . . ,  n). 

Using H~lder's inequality and the properties of tk stated in (3), we conclude 

from (8) 

(9) 

where 

'~if ~)2t~'iFi't~it~judX <= f 2Ro(A+B+C)dx+ f2R (D+E+F)dx,  
(i = 1,..., n), 
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a = K(e)R -2 ~ , I F , -  d/] 2, B = K(e) ~:,l o f ,  I 2, (i -- 1, . . . , . ) ,  

C = K t R - 2 [ O j ( u - r  - bj[ 2, D = elajVu]2, E =  K(e)[Fo[ 2, F =  KtI0jV~k[ 2 . 

The symbol f2Ro denotes the integration over the set B 2 R -  BR: we used the 

fact that IVq~2t = [V2~b21 = 0 on the complement of  Bzg-BR .  The number 

e > 0 is given and will be defined later. K(e) and K1 are constants not depending 

on R. Now we set bj resp. di ~ R r equal to the mean values of aj(u - ~) resp. 

F~ over B2R--B R. Then by the inhomogeneous Poincar6 inequality, we may 

estimate 

d 2RO J2RO 

(11) f~,,oCdx<= gef~.olVOj(u-~')ledx" 
Let us assume that B2R c fl '  c c ft. Calculating VF, -- VFi(.,u,Vu) and applying 

Condition II resp. I', I I ' ,  we we obtain 

(12) f2Ro IVFil2dx <= K3 f2RolV2ul2 dx + kaRr" 

The exponent ~ ~ (0, 1) depends on the exponent fl of the hypothesis II resp. 

I', II ' ,  and on the exponent a of the Morrey condition for Vu which holds because 

of Sobolev's theorem. Furthermore, again because of Sobolev's theorem and 

Condition II (iv), 

(13) f2. Ir~ <- K3 R~'. 

Recalling that we supposed a Morrey condition for V2r and using (10), (11), 

(12), and (13), we may estimate the right-hand side of (9) by 

(14) ef2R lVEul2dx + K'(e)f2RolV2ulZdx + K4 Rr. 

Calculating 0iF~ in the right-hand side of (9) we may estimate the lower order 

terms by an expression (14) using the same arguments as before. Thus, we arrive 

at the inequality 

5 : f2 ,re (153 ]~ik (a2FikOkOjUvO,Ojuudx < e Iveul2dx +K'(~ Ivz~lZd~+ 
R RO 

+ K4R v (i,k = 1, ... ,n;  v,# = 1, ...,r). 
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In the nonlinear case, we may apply the ellipticity condition III. Summing from 

j = 1, ... ,n, afterwards, we obtain 

(16, f ~  I VZu ] Zdx < Fef 2RI V2u 12dx + FK'(e) f 2Ro]VZU ] 2dx + FK4RV 

with some constant F ~ 2 -~ 

In the linear case, we have a weaker ellipticity condition. In order to obtain (16) 

also in this case, we rewrite 

2 v~ dp Fik 3kOjUvOiO2U, = FikOk(CP" (OiU, - c2~)) Oi(dP." (Ojuu - cj,)) + G (17) 

where 

aik, t,k = 1, . . . ,  n, in the linear clse. Note that F~' = v,. 

On account of the ellipticity condition III '  and the smoothness condition I ' ,  II '  

(i'), we may estimate the form 

fEv. v. Q = ik FikOkV,OflX, (i,k = 1 , ' " ,  n ; v,/~ = 1, . . . ,  r) 

from below by Garding's inequality for vector functions (see [11]): 

where v ~ [H1] r has compact support, 2 is the ellipticity constant and Co some 

other constant. Applying this to (15) we obtain in view of (17) that the left-hand 

side of (15) is larger than 

o8) L:-- Ixllv(r (o .-cj))IIS-Colr Cdx[ 
By an elementary calculation 

d 2RO 

-c'f  o I ve.12ax 

Setting xj ~ R" equal to the mean value of aju taken over B2R - Bn and applying 

the inhomogeneous Poincar6 inequality, we obtain 

(19) R-" f 2110 ] OjU - cil 2dx <= C" f.i 2 R o  I VOiu l Zdx" 
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By Sobolev's theorem 

(20) II ~ . (~ ju  - cj) IIg _-< C , R  ~ 

2 r for some oe(0,1) since supp r _~ B2R and ueEH~oo]. 

Finally, if we apply (18), (19), and (20) to (15), we arrive at an inequality of the 

type (16) also in the linear case. 

Setting e = �89 - t  in (15), we conclude 

f. (f. ) (21) Iv'uleax =< ~:~ Ro Iv'ul'dx +R~ 

From the last inequality the desired Morrey condition follows by a technique 

which was used in El6]: 

Adding the term K 6 fR ] V2u ] 2dx to both parts of inequality (21) (i.e. filling up 

the "hole")  and dividing by 1 + K6, we obtain 

f~ Iv=u ledx <= P f2,< iv2ul~dx + pRY (22) 

where p = / /6 / (1  +K6) < 1. We choose ~e(0,1) such that p2 ~ < 1 and ~ < y. 

If  R < 1, then R ~ < RL From (22), by iteration, it follows that 

f, Iv~ul2d~ =<p Z,(2~p)ir" + p N  -1 ,,~f IVZui2dx, (i = 0 , . . . ,  N -  1), 

where R = 2 N- 1 r, provided R < 1 and BR ~ ~.  Since 

p ~,(2~p) ' < Ko : = p / ( t  - 2~p), (i = 0, . . . ,N - 1) 

and p < 2-~, we conclude that 

f lv:ul:d~:S<:or:+(rlR)=f,,Iveul 
and 

fr [V2ui2dx ~ k~ + 2=(rlR)~fR IV2u l2dx 
for arbitrary r e (0,R/2), R < 1, BR ~ ~.  Thus, the desired Morrey condition is 

derived and the theorem is proved. The corollary follows from Morrey's lemma 

(see [10], Th. 3.5.2.). 

ADDED IN PROOF 

Note that we assumed a linear growth of the lower order term Fo(x ,u ,Vu)  with 

respect to Vu. Hildebrandt [5] has shown that u e l l  ~ implies u e l l  2'2 in the 

case of general two dimensional elliptic systems with quadratic growth for 
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Fo(x ,u ,  Vu) in Vu. As a consequence,  Fo cons idered  as a func t ion  depend ing  

on ly  on  x satisfies a M o r r e y  c o n d i t i o n  and  hence our  cond i t i on  iv). Thus  also 

under  the quad ra t i c  g rowth  hypothes is ,  our  theorem yields the step f rom u s H 2'z 

to u ~ C 1 § ~. The  case o f  more  genera l  side cond i t ions  u ( x ) K  where K is a smoo th  

subset  o f  R 2 can  be reduced to the case t rea ted  here by a loca l  t r ans fo rma t ion  

see [-14] or  [5].  ( F o r  these reasons ,  we confined ourselves to  the condi t ions  

presented  here). 
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